Thick Film Hybrid IC

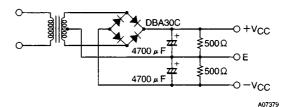
STK400-030

AF Power Amplifier (Split Power Supply) (20W+20W+20W, THD = 0.4%)

Overview

The STK400-030 is a 3-channel AF power amplifier IC supporting multichannel speakers. One package includes $20W\times3ch$ for Lch, Rch and Cch. It is pin compatible with both 3-channel output devices (STK400-*00 series) and 2-channel output devices (STK401-*00 series). The output load impedance is $6/3\Omega$.

Features


- New series combining 3-channel output devices (STK400-*00 series) and 2-channel output devices (STK401-*00 series) with the same pin compatibility.
- Output load impedance is $6/3\Omega$.
- Pin assignment is grouped into individual blocks of inputs, outputs and supply lines, minimizing the adverse effects of pattern layout on operating characteristics.
- · Minimum number of external components required.

Package Dimensions

unit: mm **4086A**

[STK400-030] 78.0 70.0

Specified Transformer Power Supply (RP-25 or Equivalent)

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

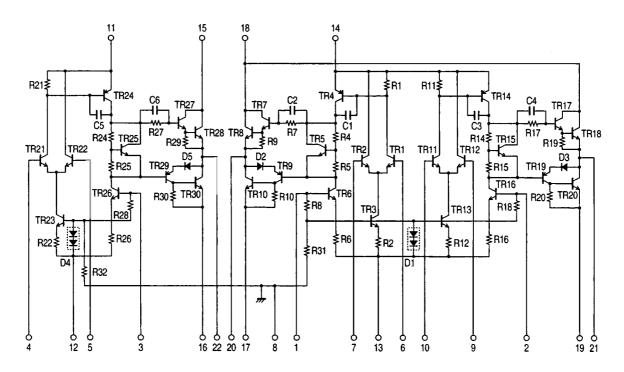
Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V _{CC} max		±34	V
Thermal resistance	Өј-с	Per power transistor	2.1	°C/W
Junction temperature	Tj		150	°C
Operating substrate temperature	Tc		125	°C
Storage temperature	Tstg		-30 to +125	°C
Available time for load short-circuit	t _s	$V_{CC} = \pm 23V, R_L = 6\Omega,$ f = 50Hz, P _O = 20W	1	s

Operating Characteristics at Ta = 25°C, $R_L = 6\Omega$ (noninductive load), $Rg = 600\Omega$, VG = 40dB

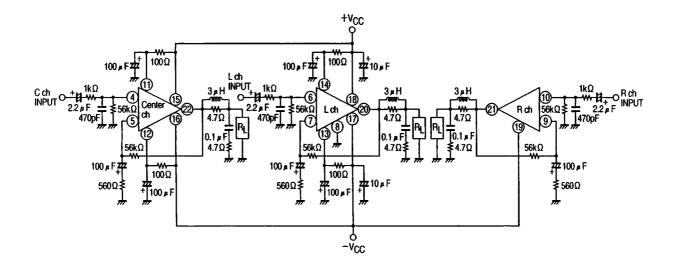
Parameter	Symbol Conditions		min	typ	max	Unit
Output power	P _O (1)	V _{CC} = ±23V, f = 20Hz to 20kHz, THD = 0.4%	20	25	-	W
	P _O (2)	$V_{CC} = \pm 19V$, f = 1kHz, THD = 1.0%, R _L = 3 Ω	20	25	-	W
Total harmonic distortion	THD(1)	$V_{CC} = \pm 23V$, f = 20Hz to 20kHz, P _O = 1.0W	_	-	0.4	%
	THD(2)	$V_{CC} = \pm 23V$, f = 1kHz, P _O = 5.0W	-	0.02	-	%

SANYO Electric Co., Ltd. Semiconductor Business Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

Parameter	Symbol	Conditions	min	typ	max	Unit
Frequency response	f _L , f _H	$V_{CC} = \pm 23V, P_0 = 1.0W, {}^{+0}_{-3} dB$	-	20 to 50k	-	Hz
Input impedance	r _i	$V_{CC} = \pm 23V$, f = 1kHz, P _O = 1.0W	-	55	-	kΩ
Output noise voltage	V _{NO}	V_{CC} = ±28V, Rg = 10k Ω	-	-	1.2	mVrms
Quiescent current	I _{CCO}	$V_{CC} = \pm 28V$	30	90	150	mA
Neutral voltage	V _N	$V_{CC} = \pm 28V$	-70	0	+70	mV


Notes.

All tests are conducted using a constant-voltage regulated power supply unless otherwise specified.


Available time for load shorted and output noise voltage are measured using the transformer power supply specified on page 1.

The output noise voltage is the peak value of an average-reading meter with an rms value scale (VTVM). A regulated AC supply (50Hz) should be used to eliminate the effects of AC primary line flicker noise.

Equivalent Circuit

Sample Application Circuit

Series Configuration

The products are serialized according to the number of channels, the output capacity, and the distortion ratio. These include the products under development: for details, please contact your Sanyo sales representative.

STK400-000, STK400-200 series (3-channel equal output)			STK401-000, STK401-200 series (2-channel)					Supply voltage [V]					
Type No.	THD [%]	Type No.	THD [%]	Rated output	Type No.	THD [%]	Type No.	THD [%]	Rated output	V _{CC} max1	V _{CC} max2	V _{CC} 1	V _{CC} 2
STK400-010		STK400-210		$10W \times 3$	STK401-010		STK401-210		$10W \times 2$	-	±26.0	±17.5	±14.0
STK400-020		STK400-220		$15W \times 3$	STK401-020		STK401-220		$15W \times 2$	-	±29.0	±20.0	±16.0
STK400-030		STK400-230		$20W \times 3$	STK401-030		STK401-230		$20W \times 2$	-	±34.0	±23.0	±19.0
STK400-040		STK400-240		$25W \times 3$	STK401-040		STK401-240 STK401-250		$25W \times 2$	-	±36.0	±25.0	±21.0
STK400-050		STK400-250		$30W \times 3$	STK401-050				$30W \times 2$	-	±39.0	±26.0	±22.0
STK400-060		STK400-260		$35W \times 3$	STK401-060		STK401-260		$35W \times 2$	-	±41.0	±28.0	±23.0
STK400-070	0.4	STK400-270	0.08	$40W \times 3$	STK401-070	0.4	STK401-270	0.08	$40W \times 2$	-	±44.0	±30.0	±24.0
STK400-080	0.4	STK400-280	0.00	$45W \times 3$	STK401-080	0.4	STK401-280	0.00	$45W \times 2$	-	±45.0	±31.0	±25.0
STK400-090		STK400-290		$50W \times 3$	STK401-090		STK401-290		$50W \times 2$	-	±47.0	±32.0	±26.0
STK400-100		STK400-300		$60W \times 3$	STK401-100		STK401-300		$60W \times 2$	-	±51.0	±35.0	±27.0
STK400-110		STK400-310		$70W \times 3$	STK401-110		STK401-310		$70W \times 2$	±56.0	-	±38.0	-
-		-		-	STK401-120		STK401-320		80W × 2	±61.0	-	±42.0	-
-		-		-	STK401-130		STK401-330		$100W \times 2$	±65.0	-	±45.0	-
-		_		_	STK401-140		STK401-340		$120W \times 2$	±74.0	-	±51.0	-

STK400-400, STK400-600 series (3-channel different output)							Supply voltage [V]				
Type No.	THD [%]	Type No.	THD [%]	Rated o	output	V _{CC} max1	V _{CC} max2	V _{CC} 1	V _{CC} 2		
STK400-450	STK400-650		Cch	30W	-	±39.0	±26.0	±22.0			
511,400-450		51 1 400-050		L, Rch	15W	-	±29.0	±20.0	±16.0		
STK400-460		STK400-660]	Cch	35W	-	±41.0	±28.0	±23.0		
311/400-400		3111400-000		L, Rch	15W	-	±29.0	±20.0	±16.0		
STK400-470		STK400-670]	Cch	40W	-	±44.0	±30.0	±24.0		
311(400-470		51K400-070		L, Rch	20W	-	±34.0	±23.0	±19.0		
STK400-480		STK400-680]	Cch	45W	-	±45.0	±31.0	±25.0		
311/400-400		3111400-000	0.08	L, Rch	20W	-	±34.0	±23.0	±19.0		
STK400-490		0.4 STK400-690 0. STK400-700		Cch	50W	-	±47.0	±32.0	±26.0		
511(400-490	0.4			L, Rch	25W	-	±36.0	±25.0	±21.0		
STK400-500			1	Cch	60W	-	±51.0	±35.0	±27.0		
311400-300				L, Rch	30W	-	±39.0	±26.0	±22.0		
STK400-510		STK400-710		Cch	70W	±56.0	-	±38.0	-		
311(400-310			511(400-710		L, Rch	35W	-	±41.0	±28.0	±23.0	
STK400-520		STK400-720		Cch	80W	±61.0	-	±42.0	-		
311(400-320				L, Rch	40W	-	±44.0	±30.0	±24.0		
STK400-530		STK400-730		Cch	100W	±65.0	-	±45.0	-		
011(400-000	511400-730			L, Rch	50W	-	±47.0	±32.0	±26.0		

 $\mathsf{V}_{CC} \text{ max1 } (\mathsf{R}_{\mathsf{L}} = 6\Omega), \, \mathsf{V}_{CC} \text{ max2 } (\mathsf{R}_{\mathsf{L}} = 3 \text{ to } 6\Omega), \, \mathsf{V}_{CC} 1 \ (\mathsf{R}_{\mathsf{L}} = 6\Omega), \, \mathsf{V}_{CC} 2 \ (\mathsf{R}_{\mathsf{L}} = 3\Omega)$

Heatsink Design Considerations

The heatsink thermal resistance, θ c-a, required to cover the hybrid IC's total power dissipation, Pd, is determined as follows:

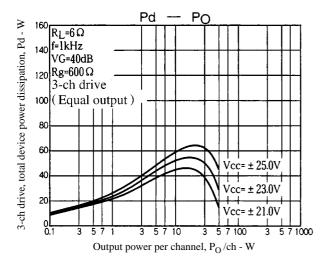
Condition 1: Hybrid IC's substrate temperature not to exceed 125°C.

where Ta is the guaranteed maximum ambient temperature.

Condition 2: Power transistor junction temperature, Tj, not to exceed 150°C.

 $Pd \times \theta c - a + Pd/N \times \theta j - c + Ta < 150^{\circ}C$ (2)

where N is the number of power transistors and θ j-c is the thermal resistance per power transistor. Note that the power dissipated per transistor is the total, Pd, divided evenly among the N power transistors.


Expressions (1) and (2) can be rewritten making θ c-a the subject.

$\theta c - a < (125 - Ta)/Pd$ (1)	
$\theta c - a < (150 - Ta)/Pd - \theta i - c/N$	

The heatsink required must have a thermal resistance that simultaneously satisfies both expressions.

The heatsink thermal resistance can be determined from (1)' and (2)' once the following parameters have been defined.

- Supply voltage : V_{CC}
- Load resistance : R_L
- Guaranteed maximum ambient temperature : Ta

The total device power dissipation when hybrid IC's $V_{CC} = \pm 23V$ and $R_L = 6\Omega$, for a continuous sine wave signal, is a maximum of 55W, as is in Pd-P_O graph.

When estimating the power dissipation for an actual audio signal input, the rule of thumb is to select Pd corresponding to $1/10 P_{O}$ max (within safe limits) for a continuous sine wave input. For example,

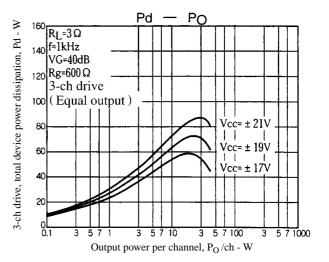
Pd = 31W (for 1/10 P_O max = 2W)

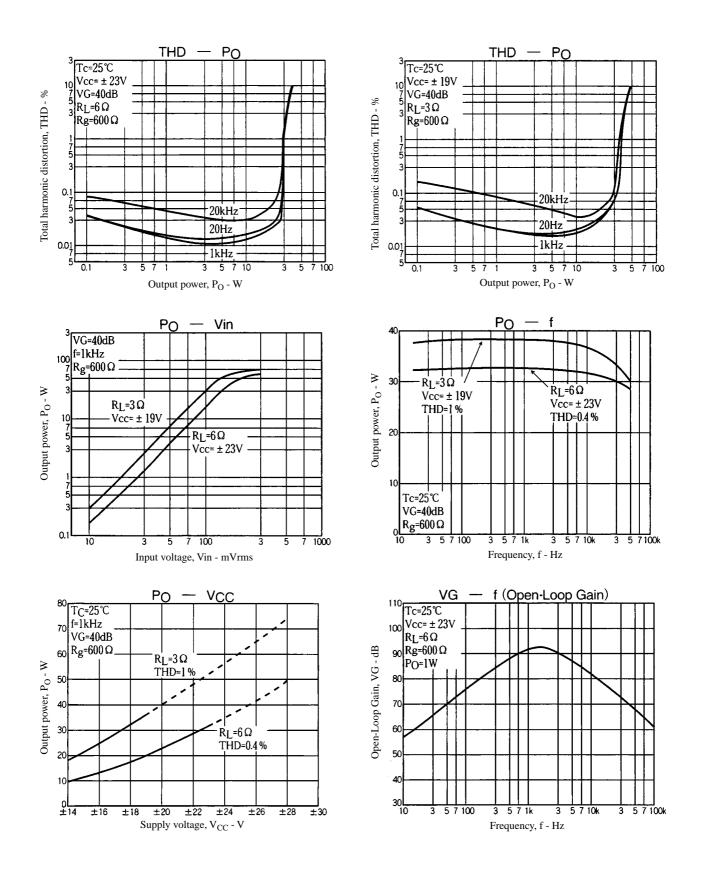
The hybrid IC has 6 power transistors, and the thermal resistance per transistor, θj -c, is 2.1°C/W. If the guaranteed maximum ambient temperature, Ta, is 50°C, then the required heatsink thermal resistance, θc -a, is:

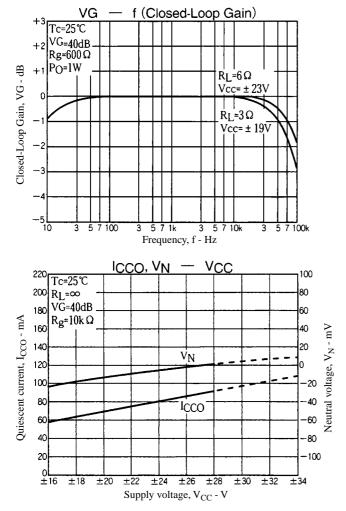
From expression (2)': θ c-a < (150 – 50)/31 – 2.1/6 < 2.87

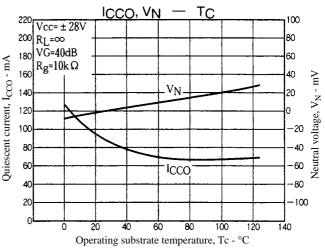
Therefore, to satisfy both expressions, the required heatsink must have a thermal resistance less than 2.41°C/W.

Similarly, when hybrid IC's $V_{CC} = \pm 19V$ and $R_L = 3\Omega$:


Pd = 36W (for 1/10 P_O max = 2W)


From expression (1)': θ c-a < (125 – 50)/36 < 2.08


From expression (2)': $\theta c-a < (150 - 50)/36 - 2.1/6$ < 2.42


Therefore, to satisfy both expressions, the required heatsink must have a thermal resistance less than 2.08°C/W.

This heatsink design example is based on a constant-voltage egulated power supply, and should be verified within your specific set environment.

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees, jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of November, 1997. Specifications and information herein are subject to change without notice.